Table 2.—Free-air resultant winds (meters per second) based on pilot balloon observations made near 6 a. m. (E. S. T.) during January 1935
[Wind from N=360°, E=90°, etc.]

	Albuquer- que, N. Mex. (1,554 m)		:. (Atlanta, Ga. (309 m)		Billings, Mont. (1,088 m)		Boston, Mass. (15 m)		Cheyenne, Wyo. (1,873 m)		Chicago, Ill. (192 m)		Cincinnati, Ohio, (153 m)		Detroit, Mich. (204 m)		Fargo, N. I)ak. (274 m)		Houston, Tex. (21 m)		Key West, Fla. (11 m)		ord,	Murfrees- boro, Tenn. (189 m)	
Altitude (m) m. s. l.	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
Surface	302 268 274 271 279	1. 1 2. 4 4. 2 7. 1 9. 9 8. 5	352 309 301 303 306 304	2.3 3.1 3.6 6.5 7.9 8.1 9.8	240 241 266 275 283 276	8. 2 8. 9 12. 1 12. 4 12. 3	305 300 302 298 311 288	3. 1 7. 3 7 6 10. 1 12. 6 12. 5	282 279 275 280 280 308	6. 0 7. 4 12. 0 10. 7 11. 3 8. 8	294 280 278 278 284 288 301	2. 5 4. 2 6. 3 9. 6 11. 5 13. 2 15. 3	310 247 264 295 309 322	1. 0 3. 4 6. 7 8. 3 8. 6 11. 4	242 254 268 283 304 314 313	1. 8 5. 3 8. 4 7. 5 10. 1 12. 9 14. 2	313 315 281 273 286 289	1. 2 3. 4 6. 5 9. 7 12. 7 17. 0	301 319 304 297 282 282	0. 4 1. 2 3. 9 3. 8 5. 7 5. 7 6. 1 9. 2	26 40 52 50 6 305 300 308	2. 5 3. 3 1. 6 0. 9 1. 1 2. 8 4. 4 6. 8	o 142 147 166 216 235 234 260	0. 9 1. 3 4. 6 6. 1 9. 8 10. 0 9. 9	9 193 210 241 287 316 306 300	0. 3 2. 1 3. 8 7. 0 8. 8 11. 1 11. 0
Altitude	N. J. C			kland, alif. B m) Oklahoma City, Okla. (402 m)		Omaha, Nebr. (306 m)		Pearl Har- bor, Terri- tory of Ha- waii ¹ (68 m)		Fla. (24 m)					Lake Utah 94 m)	Cε	Diego, alif. 5 m)	Sault Ste. Marie, Mich. (198 m)		Seattle, Wash. (14 m)		Spokane, Wash. (603 m)		Washing- ton, D. C. (10 m)		
(m) m. s. l.	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity	Direction	Velocity
Surface 500 1,000 1,500 2,000 3,000 4,000 5,000	315 313 317	2. 5 7. 3 10. 3 8. 9 13. 0	241	1. 4 0. 4 2. 7 3. 9 4. 9 5. 3 6. 6 8. 2	9 198 194 244 255 272 283 286 283 300	0.8 3.2 4.2 4.9 6.8 7.4 6.9 10.0 6.7	24 264 274 279 298 295 299	0. 9 1. 9 4. 4 8. 4 11. 8 15. 5 16. 0	224 224 223 222 241 281	0. 2 0. 8 1. 5 1. 8 1. 8 1. 8 1. 3	32 35 282 286 253	2. 3 1. 3 2. 3 3. 8 3. 3	270 271 300 297 298 302 310 310	1. 4 4. 3 7. 8 9. 3 12. 1 13. 0 14. 2 12. 4	171 168 184 213 246 251 274	2. 0 3. 2 6. 6 5. 4 6. 1 7. 9 7. 9	73 194 229 199 205 239 258 253	1. 1 0. 7 1. 0 1. 7 1. 9 2. 3 2. 4 3. 7	85 299 298 311	1. 2 0. 9 8. 3 11. 2	164 190 188 197 200 210 219	1.9 5.9 7.6 7.8 8.6 9.0 9.5	206 221 237 247 246 253	2. 4 6. 1 9. 0 7. 9 9. 9 10. 2 12. 0	335 318 307 293 291 298	1. 9 5. 3 7. 8 10. 4 13. 1 15. 3

¹ Navy stations.

RIVERS AND FLOODS

[River and Flood Division, MONTROSE W. HAYES, in charge]

By RICHMOND T. ZOCH

Although there were numerous floods in the eastern half of the United States in January, as shown in the accompanying flood table, none of those for which complete reports are available caused more than slight damage. Timely warnings were issued for each of these floods.

Complete reports are not available for the floods in the Connecticut River in New England and the Tallahatchie River in Mississippi. The significant features of these floods will be described in a later issue of the Monthly Weather Review.

Local floods in small streams where the flood warning service is not maintained were reported in the Bull Hook Creek, near Havre, Mont.; in portions of the State of Washington; and near Memphis, Tenn. The official in charge of the Memphis, Tenn., Weather Bureau office comments as follows on the last-mentioned flood:

There are no gages and the Weather Bureau does not furnish a flood-warning service on the following streams of Shelby County, Tenn.: Wolf River, which flows into the Mississippi at Memphis; Loosahatchie River which flows into the Mississippi a few miles north of Memphis; and Nonconnah Creek, which flows into the Mississippi on the southern outskirts of Memphis. All of the above streams overflowed their banks on January 20, 1935, and during the night of the 21st reached unprecedented high stages, at least unprecedented for the last 2 decades. The precipitation

at Memphis during the preceding days was 0.59 on January 18, 3.74 on January 19, and 3.74 on January 20, making a total of 8.07 inches in 3 days.

The heavy rainfall was general throughout the Memphis area. A trace of sleet, and 3.2 inches of snow, fell on the 21st. A cold wave occurred on the 21-22, reaching a minimum temperature of 12° on the 22d. The weather continued cold for the next several days, adding to the suffering of livestock, and increasing traffic hazards. All highway traffic into Memphis was halted on the 21st due to washed out roads and bridges, and water on the highways to a considerable depth in places, with the exception of one highway from the east and highways to the west. Several railroads leading into Memphis had to run their trains over other lines for several days until repairs could be made. The Shelby County engineer conservatively estimates the damage to roads and bridges in Shelby County at \$100,000. Owing to the comparatively low stage of the Mississippi River at Memphis on January 21 and the high water in Wolf River, there was a "run-out" on Wolf River on that date. Shortly after noon of the 21st several steamboats, not steamed up, broke from their moorings on Wolf River at the Anderson-Tully Lumber Co. and were carried rapidly downstream by the swift current, crashing and tearing loose other water craft and floating equipment. By the time the runaways reached the Mississippi River there were nearly 50 pieces of river craft in the wreck, including launches, motorboats, steamboats, dredges, drydocks, pontoons, and other floating equipment. The United States steamboat inspectors estimate this damage at approximately \$100,000. An unestimated number of hogs and cows were drowned, and probably a small number of other livestock.

The total damage of this flood is conservatively estimated at

over \$200,000.

Table of flood stages in January 1935
[All dates in January, unless otherwise specified]

Table of flood stages in January 1935—Continued
[All dates in January, unless otherwise specified]

River and station	Flood stage		Above flood stages—dates		Cr		est	River and station	Flood		e flood —dates	Crest	
	Stage	From	ı—	То		tage	Date		stage	From-	То—	Stag	Date
ATLANTIC SLOPE DRAINAGE								MISSISSIPPI SYSTEM—continued	Feet			Feet	
Connecticut: White River Junction, Vt	15 8		10 11 10 9	10 1- 1 1 1	0 18 4 20 1 16 1 8	Feet 8. 1 0. 7 6. 4 9. 7	10 12 10 9	Ohio Basin—Continued Green: Lock No. 6, Brownsville, Ky Lock No. 4, Woodbury, Ky Lock No. 2, Rumsey, Ky West Fork: Edwardsport, Ind	28 33 34 12	20 20 22 22 23	2 2 7 Feb. 2	9 48.1 5 41.6	23 24 30 24
Oneonta, N. Y. Bainbridge, N. Y. Binghanton, N. Y. Towanda, Pa. James: Buchanan, Va. Lynchburg, Va. Columbia, Va.	16		9 10 22 23 22	1: 1 1 2 2: 2:	1 16 1 16 4 24 4 25	5. 8 6. 75 6. 5 4. 5 2. 0	11 10 10 23 23 24	Cumberland: Celina, Tenn. Clarksville, Tenn. Lock F, Eddyville, Ky North Fork: Mendota, Va Nolichucky: Embreeville, Tenn	28 46 50 8 8	21 21 22 23 9	2 2 2 2 2	5 49.7 55.7	23 22 25 23 9
Richmond, Va Roanoke:	8		23	2	7 18	0. 3 8. 8	25	French Broad: Asheville, N. COldtown, Tenn	6 8	9 9	1	8.3 9.5	9
Randolph, Va	31 10 20		24 24 28 3 10	Feb. 2	7 38 3 11 4 23	4. 8 8. 3 1. 4 3. 7 8. 3	25 26 31 3 10	Ohio: Dam No. 25. Dam No. 47, Newburgh, Ind Evansville, Ind Dam No. 50, Fords Ferry, Ky	40 35 35 34	25 28 26 24	2 3 3 Feb.	35.3	25 29 29 28-30
Santee: Rimini, S. C Ferguson, S. C Savannah: Ellenton, S. C	12	l I	2 11 26 13 3 11	1- 2- 1-	1 12 7 12 7 12 6 17	3. 0 2. 9 2. 9 2. 3 7. 8 0. 0	5 12 27 14, 15 4 13	White Basin Black: Black Rock, Ark White: Clarendon, Ark Arkansas Basin Petit Jean: Danville, Ark	14 26 20	21 29 20	Feb. 2	26.3	Feb. 3
EAST GULF OF MEXICO DRAINAGE								Red Basin	20	20	2	24.00	
Tombigbee: Lock No. 3, Ala Lock No. 1, Ala Pearl:		{Dec.	24 1	3	7 36	9. 2 6. 8 1. 4	Dec. 30 26 6	Ouachita: Arkadelphia, Ark Camden, Ark Little: Whitecliffs, Ark Sulohur:	17 26 25	20 22 22	2: 3 2:	1 37, 13	21 25 23
Jackson, Miss	15	{Dec. {	27 23 23 3 26	Feb. 11 12 12 12 12 12 12 12 12 12 12 12 12	2 23 4 15 8 13	4. 5 3. 0 5. 3 3. 6	2-4 26 23 7 29	Ringo Crossing, Tex	20 22	19 22	2 3	27. 2 30. 0	21 24
MISSISSIPPI SYSTEM)						Big Lake Outlet: Manila, Ark	10	3	(1)	16.8	28, 29
Upper Mississippi Basin Illinois: Morris, III Peru, III			9 11	10 1		3. 05 7. 1	9, 10 11	St. Francis: Fisk, Mo. St. Francis, Ark. Tallahatchie: Swan Lake, Miss.	20 18 26	20 21 10	(1) (1)	23. 4 21. 7 (¹)	23 26
Ohio Basin								¹ Continued into February.					
Gauley: Summersville, W. Va	11	lí .	17 21 23 20	18 23 24 24	3 11 3 11 5 34	1. 76 1. 46 1. 4 4. 4	17 23 23 23						

WEATHER OF THE ATLANTIC AND PACIFIC OCEANS

(The Marine Division, W. F. McDonald in Charge)

NORTH ATLANTIC OCEAN, JANUARY 1935

By H. C. HUNTER

Atmospheric pressure.—The average pressure during January was greater than normal over most of the North Atlantic, and was especially high, compared with normal, over the northeastern area. At Valencia, Ireland, the month averaged 0.5 inch above normal pressure, or 1.05 inches higher than during the month preceding. A period of particularly high pressure over the waters adjacent to the British Isles was noted from the 15th to 22d.

The southeastern portion of the North Atlantic averaged slightly above normal in pressure, and from the 21st to the end of the month this region was almost constantly much above normal.

One considerable part of the North Atlantic, the southwestern, had pressure averaging moderately less than normal. Bermuda averaged for the month 0.07 inch lower than normal pressure, and was nearly always below during the last 9 days of the month.

The highest reading reported was 30.86 inches, by the American steamship *Collamer* during the forenoon of the 21st, at about latitude 50° N., longitude 12° W. The

lowest reading was 28.45 inches, noted by the Dutch steamer *Leerdam*, very late on the 14th, at about 43° N., 62° W., near the center of a well-developed storm. These pressure extremes were from three to six tenths of an inch higher than those of the preceding month.

Table 1.—Averages, departures, and extremes of atmospheric pressure (sea level) at selected stations for the North Atlantic Ocean and its shores, January 1935

Station	Average pressure	Depar- ture	Highest	Date	Lowest	Date
Yellowshield Considered	Inches	Inch	Inches	00.05	Inches	1.5
Julianehaab, Greenland Reykjavik, Iceland	29.74	+0.28	30. 15 30. 39	22, 25 4	28. 93 28. 74	15 9
Lerwick, Shetland Islands		+. 31	30. 80	18	28. 52	25
Valencia, Ireland Lisbon, Portugal		+.50 +.09	30. 83 30. 47	21 12	29. 84 30. 03	25 19
Madeira		+.03	30. 32	26	29. 94	10
Horta, Azores	30. 23	+.07	30.58	30	29, 94	18
Belle Isle, Newfoundland		+. 05	30. 52	29	28.88	3
Halifax, Nova Scotia Nantucket		+.04 +.06	30. 72 30. 82	5 5	28. 88 29. 28	2
Hatteras		+.02	30. 62	5	29. 61	23
Bermuda	30.09	07	30.48	5	29.68	10
Turks Island		04	30.11	20	29.85	10
Key West New Orleans	30. 08 30. 17	02 +. 04	30. 28 30. 53	30 24	29. 86 29. 78	9 8

Note.—All data based on a. m. observations only, with departures compiled from best available normals related to time of observation, except Hatteras, Key West, Nantucket, and New Orleans, which are 24-hour corrected means.